Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Pediatr Rheumatol Online J ; 22(1): 51, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724970

RESUMO

BACKGROUND: Juvenile Idiopathic Arthritis (JIA) is a condition that occurs when individuals under the age of 16 develop arthritis that lasts for more than six weeks, and the cause is unknown. The development of JIA may be linked to serum metabolites. Nevertheless, the association between JIA pathogenesis and serum metabolites is unclear, and there are discrepancies in the findings across studies. METHODS: In this research, the association between JIA in humans and 486 serum metabolites was assessed using genetic variation data and genome-wide association study. The identification of causal relationships was accomplished through the application of univariate Mendelian randomization (MR) analysis. Various statistical methods, including inverse variance weighted and MR-Egger, were applied to achieve this objective. To ensure that the findings from the MR analysis were trustworthy, a number of assessments were carried out. To ensure the accuracy of the obtained results, a range of techniques were utilised including the Cochran Q test, examination of the MR-Egger intercept, implementation of the leave-one-out strategy, and regression analysis of linkage disequilibrium scores. In order to identify the specific metabolic pathways associated with JIA, our primary objective was to perform pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes. RESULTS: Two-sample summary data MR analyses and sensitivity analyses showed that five metabolites were significantly causally associated with JIA, including two risk factors-kynurenine (odds ratio [OR]: 16.39, 95% confidence interval [CI]: 2.07-129.63, p = 5.11 × 10- 6) and linolenate (OR: 16.48, 95% CI: 1.32-206.22, p = 0.030)-and three protective factors-3-dehydrocarnitine (OR: 0.32, 95% CI: 0.14-0.72, p = 0.007), levulinate (4-oxovalerate) (OR: 0.40, 95% CI: 0.20-0.80, p = 0.010), and X-14,208 (phenylalanylserine) (OR: 0.68, 95% CI: 0.51-0.92, p = 0.010). Furthermore, seven metabolic pathways, including α-linolenic acid metabolism and pantothenate and CoA biosynthesis, are potentially associated with the onset and progression of JIA. CONCLUSION: Five serum metabolites, including kynurenine and 3-dehydrocarnitine, may be causally associated with JIA. These results provide a theoretical framework for developing effective JIA prevention and screening strategies.


Assuntos
Artrite Juvenil , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Artrite Juvenil/genética , Artrite Juvenil/sangue , Análise da Randomização Mendeliana/métodos , Criança , Polimorfismo de Nucleotídeo Único , Cinurenina/sangue , Cinurenina/análogos & derivados
2.
Angew Chem Int Ed Engl ; : e202405593, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716660

RESUMO

For zinc-metal batteries, the instable chemistry at Zn/electrolyte interphasial region results in severe hydrogen evolution reaction (HER) and dendrite growth, significantly impairing Zn anode reversibility. Moreover, an often-overlooked aspect is this instability can be further exacerbated by the interaction with dissolved cathode species in full batteries. Here, inspired by sustained-release drug technology, an indium-chelated resin protective layer (Chelex-In), incorporating a sustained-release mechanism for indium, is developed on Zn surface, stabilizing the anode/electrolyte interphase to ensure reversible Zn plating/stripping performance throughout the entire lifespan of Zn//V2O5 batteries. The sustained-release indium onto Zn electrode promotes a persistent anticatalytic effect against HER and fosters uniform heterogeneous Zn nucleation. Meanwhile, on the electrolyte side, the residual resin matrix with immobilized iminodiacetates anions can also repel H2O and detrimental anions (SO42- and polyoxovanadate ions dissolved from V2O5 cathode) outside the electric double layer. This dual synergetic regulation on both electrode and electrolyte sides culminates a more stable interphasial environment, effectively enhancing Zn anode reversibility in practical high-areal-capacity full battery systems. Consequently, the bio-inspired Chelex-In protective layer enables an ultralong lifespan of Zn anode over 2800 h, which is also successfully demonstrated in ultrahigh areal capacity Zn//V2O5 full batteries (4.89 mAh cm-2).

3.
Nanomaterials (Basel) ; 13(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38063768

RESUMO

Quantum dots (QDs), with their exceptional optical properties, have emerged as promising candidates to replace traditional phosphors in lighting and display technologies. This study delves into the integration strategies of QDs within glass and polymer matrices to engineer advanced quantum dot color converters (QDCCs) at the industrial scale for practical applications. To achieve enhancements in the photostability and thermal stability of QDCCs, we explore two distinct approaches: the dispersion of QDs in a hydrophilic glass matrix via a sol-gel process and the incorporation of QDs into a non-polar acrylate monomer to formulate QD/polymer nanocomposites. This research further investigates the optical behaviors of these composites, focusing on their light-scattering and propagation mechanisms, which are critical for optimizing light extraction efficiency in QDCCs. Additional optical film and light-scattering particles can improve color conversion efficiency by ~140%. These advancements present a significant step forward in the development of high-performance, energy-efficient, QD-based lighting and display systems.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37927092

RESUMO

Photostability of semiconductor core/shell quantum dots (QDs) has historically been perceived as intricate and unpredictable. Notably, the long-term luminescence stability of QDs under light exposure does not seem to consistently correspond with their characteristics in the absence of light. In this study, we propose a positive photoaging mechanism of QDs, integrating both ligand/shell-induced photobrightening and surface photo-oxidation, to deal with the photostability nuances. When QDs are subjected to higher energy light, their photobrightening and photodarkening conjointly determine the photostability. Enhanced photostability may not be simply attributed to a thicker shell or the presence of ligands. When adjusted with an optimal shell thickness and supplemented with negatively charged ligands, QDs exhibit enhanced photostability in both solvents and polymers.

5.
J Biomed Sci ; 30(1): 84, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805495

RESUMO

mRNA-based drugs have tremendous potential as clinical treatments, however, a major challenge in realizing this drug class will promise to develop methods for safely delivering the bioactive agents with high efficiency and without activating the immune system. With regard to mRNA vaccines, researchers have modified the mRNA structure to enhance its stability and promote systemic tolerance of antigenic presentation in non-inflammatory contexts. Still, delivery of naked modified mRNAs is inefficient and results in low levels of antigen protein production. As such, lipid nanoparticles have been utilized to improve delivery and protect the mRNA cargo from extracellular degradation. This advance was a major milestone in the development of mRNA vaccines and dispelled skepticism about the potential of this technology to yield clinically approved medicines. Following the resounding success of mRNA vaccines for COVID-19, many other mRNA-based drugs have been proposed for the treatment of a variety of diseases. This review begins with a discussion of mRNA modifications and delivery vehicles, as well as the factors that influence administration routes. Then, we summarize the potential applications of mRNA-based drugs and discuss further key points pertaining to preclinical and clinical development of mRNA drugs targeting a wide range of diseases. Finally, we discuss the latest market trends and future applications of mRNA-based drugs.


Assuntos
COVID-19 , Nanopartículas , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Tolerância a Medicamentos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Vacinas de mRNA , Nanopartículas/uso terapêutico
6.
Int J Biol Macromol ; 253(Pt 2): 126841, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696368

RESUMO

The natural characteristics of protein/polysaccharide-based hydrogels, as a potential drug delivery platform, have attracted extensive attention. Probiotics have attracted renewed interest in drug research because of their beneficial effects on host health. The idea of using probiotics loaded on protein/polysaccharide-based hydrogels as potential drugs to treat different diseases has been put forward and shows great prospects. Based on this, in this review, we highlight the design strategy of hydrogels loaded probiotic-mediated therapy systems and review the potential diseases that have been proved to be treatable in the laboratory, including promoting wound healing and improving intestinal health and vaginal health, and discuss the challenges existing in the current design.


Assuntos
Hidrogéis , Polissacarídeos , Hidrogéis/farmacologia , Polissacarídeos/farmacologia , Cicatrização , Sistemas de Liberação de Medicamentos
7.
ACS Nano ; 17(16): 15492-15503, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37535393

RESUMO

Aqueous zinc-iodine (Zn-I2) batteries have attracted extensive attention due to their merits of inherent safety, wide natural abundance, and low cost. However, their application is seriously hindered by the irreversible capacity loss resulting from both anode and cathode. Herein, an anion concentrated electrolyte (ACE) membrane is designed to manipulate the Zn2+ ion flux on the zinc anode side and restrain the shuttle effect of polyiodide ions on the I2 cathode side simultaneously to realize long-lifetime separator-free Zn-I2 batteries. The ACE membrane with abundant sulfonic acid groups possesses a multifunctional amalgamation of good mechanical strength, guided Zn2+ ion transport, and effective charge repulsion of polyiodide ions. Moreover, rich ether oxygen, carbonyl, and S-O bonds in anionic polymer chains will form hydrogen bonds with water to reduce the proportion of free water in the ACE membrane, inhibiting the water-induced interfacial side reactions of the Zn metal anode. Besides, DFT calculations and in-situ UV-vis and in situ Raman results reveal that the shuttle effect of polyiodide ions is also significantly suppressed. Therefore, the ACE membrane enables a long lifespan of Zn anodes (3700 h) and excellent cycling stability of Zn-I2 batteries (10000 cycles), thus establishing a substantial base for their practical applications.

8.
Neurochem Res ; 48(8): 2514-2530, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37036545

RESUMO

Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Magnésio , Depressão/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Hipocampo/metabolismo
9.
Org Lett ; 25(14): 2482-2486, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37013983

RESUMO

Reported here is a photocatalytic strategy for the chemoselective decarboxylative oxygenation of carboxylic acids using Ce(III) catalysts and O2 as the oxidant. By simply changing the base employed, we demonstrate that the selectivity of the reaction can be channeled to favor hydroperoxides or carbonyls, with each class of products obtained in good to excellent yields and high selectivity. Notably, valuable ketones, aldehydes, and peroxides are produced directly from readily available carboxylic acid without additional steps.

10.
Angew Chem Int Ed Engl ; 62(22): e202300418, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36941210

RESUMO

Zn-I2 batteries stand out in the family of aqueous Zn-metal batteries (AZMBs) due to their low-cost and immanent safety. However, Zn dendrite growth, polyiodide shuttle effect and sluggish I2 redox kinetics result in dramatically capacity decay of Zn-I2 batteries. Herein, a Janus separator composed of functional layers on anode/cathode sides is designed to resolve these issues simultaneously. The cathode layer of Fe nanoparticles-decorated single-wall carbon nanotubes can effectively anchor polyiodide and catalyze the redox kinetics of iodine species, while the anode layer of cation exchange resin rich in -SO3 - groups is beneficial to attract Zn2+ ions and repel detrimental SO4 2- /polyiodide, improving the stability of cathode/anode interfaces synergistically. Consequently, the Janus separator endows outstanding cycling stability of symmetrical cells and high-areal-capacity Zn-I2 batteries with a lifespan over 2500 h and a high-areal capacity of 3.6 mAh cm-2 .

11.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991675

RESUMO

Due to the popularity of different high bandwidth applications, it is becoming increasingly difficult to satisfy the huge data capacity requirements, since the traditional electrical interconnects suffer significantly from limited bandwidth and huge power consumption. Silicon photonics (SiPh) is one of the important technologies for increasing interconnect capacity and decreasing power consumption. Mode-division multiplexing (MDM) allows signals to be transmitted simultaneously, at different modes, in a single waveguide. Wavelength-division multiplexing (WDM), non-orthogonal multiple access (NOMA) and orthogonal-frequency-division multiplexing (OFDM) can also be utilized to further increase the optical interconnect capacity. In SiPh integrated circuits, waveguide bends are usually inevitable. However, for an MDM system with a multimode bus waveguide, the modal fields will become asymmetric when the waveguide bend is sharp. This will introduce inter-mode coupling and inter-mode crosstalk. One simple approach to achieve sharp bends in multimode bus waveguide is to use a Euler curve. Although it has been reported in the literature that sharp bends based on a Euler curve allow high performance and low inter-mode crosstalk multimode transmissions, we discover, by simulation and experiment, that the transmission performance between two Euler bends is length dependent, particularly when the bends are sharp. We investigate the length dependency of the straight multimode bus waveguide between two Euler bends. High transmission performance can be achieved by a proper design of the waveguide length, width, and bend radius. By using the optimized MDM bus waveguide length with sharp Euler bends, proof-of-concept NOMA-OFDM experimental transmissions, supporting two MDM modes and two NOMA users, are performed.

12.
Behav Sci (Basel) ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975294

RESUMO

Perfectionism is an important personality trait that affects people's behavior, especially consumption behavior. In our study, we aimed to investigate whether perfectionists show different preferences in their consumption choices compared with non-perfectionists and to explore the potential psychological mechanisms mediating this effect. Through four studies, we found that perfectionists are less likely to buy imperfect products, including those that are close to expiry and that have defective functioning, flawed appearance, and incomplete after-sales service than non-perfectionists, and are more likely to avoid choosing imperfect products. In addition, we found a mediating effect of dichotomous thinking and intolerance of uncertainty on this effect to explain the behavioral preferences of perfectionists in their purchasing choices. Manufacturers and marketers can benefit from the results of this study by implementing targeted production requirements and marketing strategies based on the consumer behavior preferences of perfectionists.

13.
J Agric Food Chem ; 71(8): 3670-3680, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799488

RESUMO

The bioavailability of arsenic (As) is influenced by ammonium (NH4+-N) fertilization, but the underlying mechanisms controlling As transformation in soil-rice systems are still not fully understood. The effects of two NH4+-N fertilizers, urea and NH4HCO3, on the transformation of As in a paddy soil with low organic matter content and transfer in rice plants were investigated. Treatments with urea and NH4HCO3 significantly increased arsenite (As(III)) concentration in porewater, bioavailable As in rhizosphere soil, and the relative abundance of the As(V) respiratory reductase gene (arrA) and As(III) methyltransferase gene (arsM). Furthermore, the relative expression of As transporter genes in rice roots, such as OsLsi1, OsLsi2, and OsLsi3, was upregulated, and the translocation efficiency of As(III) from rice roots to brown rice was promoted. Subsequently, As(III) accumulation in brown rice significantly increased. Therefore, attention should be paid to As-contaminated paddy fields with NH4+-N fertilization.


Assuntos
Compostos de Amônio , Arsênio , Oryza , Poluentes do Solo , Arsênio/metabolismo , Oryza/metabolismo , Compostos de Amônio/metabolismo , Solo , Raízes de Plantas/química , Ureia/metabolismo , Poluentes do Solo/metabolismo
14.
Sci Total Environ ; 872: 162289, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36804971

RESUMO

This work revealed the profile of viral communities in paddy soils with different levels of arsenic (As) contamination during the flooded period. The structure of viral communities differed significantly in highly and moderately As-contaminated soils. The diversity of soil viral communities under high As contamination decreased. Siphoviridae, Podoviridae, Myoviridae, and Microviridae were the dominant viral families in all samples, and the relative abundances of five of the top 20 viral genera were significantly different between highly and moderately As-contaminated groups. Seventeen dissimilatory As(V)-reducing bacteria were predicted to host 161 viral operational taxonomic units (vOTUs), mainly affiliated with the genera of Sulfurospirillum, Deferribacter, Bacillus and Fusibacter. Among them, 28 vOTUs were also associated with Fe(III)-reducing bacteria, which belonged to different species of the genus Shewanella. Procrustes analysis showed that the community structure of soil viruses was strongly correlated with both prokaryotic community structure and geochemical properties. Random forest analyses revealed that the Total-Fe, DCB-Fe and oxalate-Fe were the most significant variables on viral community richness, while the total-As concentration was an important factor on the Shannon index. Furthermore, As resistance genes (ArsC, ArsR and ArsD), As methylation genes (arsM) and As transporter genes (Pst and Pit) were identified among the auxiliary metabolic genes (AMGs) of the virome. This work revealed that the viruses might influence microbial adaptation in response to As-induced stress, and provided a perspective on the potential virus-mediated biogeochemical cycling of As.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Arsênio/análise , Compostos Férricos/metabolismo , Bactérias/metabolismo , Poluição Ambiental/análise , Solo/química , Poluentes do Solo/análise , Microbiologia do Solo
15.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679508

RESUMO

Silicon photonics (SiPh) are considered a promising technology for increasing interconnect speed and capacity while decreasing power consumption. Mode division multiplexing (MDM) enables signals to be transmitted in different orthogonal modes in a single waveguide core. Wideband MDM components simultaneously supporting wavelength division multiplexing (WDM) and orthogonal frequency-division multiplexing (OFDM) can significantly increase the transmission capacity for optical interconnects. In this work, we propose, fabricate and demonstrate a wideband and channel switchable MDM optical power divider on an SOI platform, supporting single, dual and triple modes. The switchable MDM power divider consists of two parts. The first part is a cascaded Mach-Zehnder interferometer (MZI) for switching the data from their original TE0, TE1 and TE2 modes to different modes among themselves. After the target modes are identified, mode up-conversion and Y-branch are utilized in the second part for the MDM power division. Here, 48 WDM wavelength channels carrying OFDM data are successfully switched and power divided. An aggregated capacity of 7.682 Tbit/s is achieved, satisfying the pre-forward error correction (pre-FEC) threshold (bit-error-rate, BER = 3.8 × 10-3). Although up to three MDM modes are presented in the proof-of-concept demonstration here, the proposed scheme can be scaled to higher order modes operation.


Assuntos
Registros , Silício , Estudo de Prova de Conceito , Tecnologia
16.
Brain Res ; 1790: 147983, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35709892

RESUMO

Alzheimer disease (AD) is a neurodegenerative disorder, which is characterized by progressive impairment of memory and cognition. Early diagnosis and treatment of AD has become a leading topic of research. In this study, we explored the effects of the miR-132-3p/FOXO3a-PPM1F axis on the onset of AD for possible early diagnosis and therapy. We found that miR-132-3p levels in the hippocampus and blood were drastically decreased in APP/PS1 mice from 9 months of age, and bi-directional manipulation of miR-132-3p levels induced magnified effects on learning memory behaviors, and manifestation of AD-related pathological characteristics and inflammatory cytokines in APP/PS1 mice of relevant ages. The hippocampal PPM1F expression levels were significantly elevated in APP/PS1 mice from 3 months of age, which was correlated with miR-132-3p levels at different ages. Overexpression of PPM1F remarkably accelerated the progression of learning memory deficits and associated pathological factors in APP/PS1 mice. Further, we showed that miR-132-3p modulated the expression of PPM1F via FOXO3a in HT22 cells. Finally, using peripheral blood samples of human study participants, we found that the miR-132-3p and PPM1F expression levels in patients with AD were also altered with prominent correlations. In conclusion, miR-132-3p indirectly regulates PPM1F expression by targeting FOXO3a, which could play an extensive role in contributing to the establishment of early diagnosis, treatment, and pathogenesis of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Fosfoproteínas Fosfatases/uso terapêutico , Presenilina-1/genética , Presenilina-1/metabolismo
17.
Front Psychol ; 13: 850670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572290

RESUMO

The brand loyalty of fan consumers can be influenced by idol worship if certain celebrity figures are linked with a brand. Collaborating with idols is an effective marketing strategy that many companies use to enhance their appeal to fan consumers and increase their brand equity. Fan consumers demonstrate passion and admiration for their idols, and this psychological phenomenon affects their cognition of brands that are endorsed by their favorite celebrity figures. The purpose of this study was to explore the influence mechanism that propels fan consumers' brand loyalty and the mediating effects of brand passion and brand attachment. Our results revealed the following key findings: (1) brand personality attraction, perceived emotional value, brand-based self-realization, and relatedness needs satisfaction have a significant effect on brand passion; (2) perceived emotional value and relatedness needs satisfaction have a significant effect on brand passion attachment; (3) brand passion can directly affect brand loyalty, but it also indirectly affects brand loyalty through brand attachment; (4) brand personality appeal, brand-based self-realization, and relatedness needs satisfaction can influence brand attachment through brand passion and ultimately have an impact on brand loyalty; (5) brand perceived emotional value and relatedness needs satisfaction affect brand loyalty through brand attachment. These findings have several implications for enterprises that want to meet fan consumers' emotional needs, enhance brand loyalty through the use of idol brand endorsement, or implement brand campaigns that involve idols.

18.
Sci Total Environ ; 826: 154174, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35231505

RESUMO

Biochar-based compound fertilisers (BCF) are gaining increasing attention as they are cost-effectiveness and improve soil fertility and crop yield. However, little is known about the mechanisms by which micron-size BCF particles enhance crop growth. In the present study, Wuyunjing7 rice seedlings were exposed to micron-size particles of wheat straw-based BCF (mBCF) diffused through a 25-µm nylon mesh. The control was fertilised with urea, diammonium phosphate, and potassium chloride to ensure that both treatments received comparables level of N, P, and K. The effects of mBCF on rice seedling growth were evaluated by determining the changes in nitrogen uptake and utilisation via nitrogen content measurements, short-term 15N-NH4+ influx assays, and analyses of transcript-level nutrient transporter gene expression. The shoot biomass of rice seedling treated with mBCF at the rate of 5 mg/ g soil was 33% greater than that for the control. Root and shoot 15N accumulation rates were 44% and 14% higher, respectively, in the mBCF-treated than the control. The mBCF-treated rice seedlings had higher phosphorus, potassium, and iron content than the control. Moreover, the treatments significantly differed in terms of their nutrient transporter gene expression levels. Spectroscopy and microscopy were used to visualise nutrient distributions across transverse root sections. There were relatively higher iron oxide nanoparticle and silicon-based compound concentrations in the roots of the mBCF-treated rice seedlings than in those of the control. The foregoing difference might account for the fact that the growth of the mBCF-treated rice was superior to that of the control. We demonstrated that the mBCF treatment created a more negative electrical potential at the root epidermal cell layer (~ - 160 mV) than the root surface. This potential difference may have been the driving force for mineral nutrient absorption.


Assuntos
Fertilizantes , Oryza , Carvão Vegetal , Fertilizantes/análise , Nitrogênio/análise , Nutrientes/análise , Raízes de Plantas/metabolismo , Plântula , Solo/química
19.
Sci Total Environ ; 825: 154136, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218830

RESUMO

Plant growth promoting (PGP) traits of inoculation in bioaugmentation assisted phytostabilization of heavy metal-contaminated soil have been well documented. The property of inoculation to immobilize heavy metals is another major contributor to phytostabilization efficiency. This study investigated the effects of inoculation with different concentrations of rhizobacteria Bacillus subtilis on the cadmium (Cd) bioavailability and distribution, enzyme activities, and bacterial community structure in soil planted with ryegrass (Lolium multiflorum L.). Addition of a high dosage of Bacillus subtilis decreased plant malondialdehyde (MDA) amount, increased plant antioxidant enzyme and soil nutrient cycling-involved enzyme activities, and subsequently enhanced biomass by 20.9%. In particular, the inoculation reduced the Cd bioavailability in soil, bioaccumulation coefficient (BCF), translocation factors (TF), and accumulation in ryegrass by 39.1%, 36.5%, 24.2%, and 27.9%, respectively. Furthermore, 16S rRNA gene sequencing analysis of rhizosphere soil revealed microbial community structure alterations (e.g., enrichment of Proteobacteria), eight phenotype regulations, and seventeen Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway transformations accounted for the stress mitigation and Cd immobilization in the presence of inocula. Besides, intracellular accumulation and biofilm sequestration were proposed as primary immobilization mechanisms induced by bioaugmentation.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Bacillus subtilis/metabolismo , Biodegradação Ambiental , Cádmio/análise , Lolium/metabolismo , Metais Pesados/análise , RNA Ribossômico 16S , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...